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The nonlinear Boltzmann equation has been solved for shock waves in a Max- 
wellian gas for eight upstream Mach numbers MI ranging from 1.1 to 10. The 
numerical solutions were obtained by using Nordsieck’s method, which was 
revised for use with the differential cross-section corresponding to an jnter- 
molecular force potential following an inverse fifth-power law. The accuracy 
of the calculations of microscopic and macroscopic properties for this collision 
law is comparable with that for elastic spheres published earlier (Hicks, Yen & 
Reilly 1972). 

We have made comparisons of the detailed characteristics of the internal 
shock structure in a Maxwellian gas with those in a gas of elastic spheres. The 
purpose of this comparative study is to h d  the shock properties that are 
sensitive as well as those which are insensitive to the change in collision law 
and to find effective ways to study them. 

The variation of thermodynamic and transport properties of interest with 
respect to density and to each other was found to depend only weakly on the 
change in collision law. The principal effect on the macroscopic shock structure 
due to the change in intermolecular potential is in the spatial variation of the 
macroscopic properties. The spatial variation of macroscopic properties may 
be determined accurately from the corresponding moments of the collision 
integral, especially in the upstream and downstream wings of the shock wave. 
The results for the velocity distribution function exhibit the microscopic shock 
characteristics influenced by a difference in intermolecular collisions, in par- 
ticular the departure from equilibrium in the upstream wing of the shock and 
the relaxation towards equilibrium in the downstream wing. The departure of 
several characteristics of weak shock waves from those of the Chapman-Enskog 
linearized theory and the Navier-Stokes shock is also insensitive to the change 
in collision law. The deviation of the half-width of the function /fdv,dv, from 
the Chapman-Enskog first iterate at MI = 1.59 is in agreement with an experi- 
ment (Muntz & Harnett 1969). 

1. Introduction 
The details of shock structure concerning the microscopic and macroscopic 

properties are of physical interest. Since the non-equilibrium behaviour in 
a shock wave is directly related to the intermolecular collisions, the shock 
structure changes if the intermolecular collision law changes. It would be sig- 
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nificant to  evaluate the effect of a change of collision law on those shock properties 
that are of particular interest to either a theoretician or an experimentalist. 
For example, a physical experiment on a shock wave is often limited to the 
measurement of a small number of properties for selected gases. The question 
arises as to the way to compare the results for these properties with theoretical 
predictions, which are often obtained using an assumed intermolecular collision 
law. The difficulty in ascertaining the significance of such comparisons is twofold. 
First, the differential cross-sections for realistic molecular fields are difficult to 
determine. Second, even if the cross-sections were known, i t  would be extremely 
difficult to incorporate them in many theoretical calculations of non-equilibrium 
gas flows. 

The use of different differential cross-sections presents no problem with Monte 
Carlo methods. For example, Bird has used a direct simulation technique to 
compute and compare density profiles in a shock wave for Ml = 8 and several 
power laws for the intermolecular force potential (Bird 1970) and to calculate 
other macroscopic properties for Ml = 8 and the twelfth-power law. Nordsieck's 
method of evaluating the collision integral in the nonlinear Boltzmann equation 
(Nordsieck & Hicks 1967) can also be adapted to any differential cross-section, 
even though this method has been applied to problems only for gases of elastic 
spheres, including that of the shock wave (Hicks & Yen 1969; Hicks et al. 1972). 

In  using Nordsieck's method to solve the problem of a shock wave in a gas of 
elastic spheres, we have computed and analysed in detail the microscopic and 
macroscopic characteristics of the shock-wave structure, many of which were 
not available before. Questions have been raised as to the deviation of these 
results from those for real gases which have a different intermolecular collision 
law. It has been our strong feeling that many of our findings are insensitive to 
a change in the intermolecular force potential and are thus also applicable to 
gases with other collision laws. This feeling is based on our belief that many of 
the velocity moments that determine properties of physical interest are strongly 
coupled. 

The purpose of this paper is to show that many of our significant findings are 
indeed insensitive to changes in the intermolecular collision law and that the 
significant effects of changes in the collision law, such as in the spatial variation 
of properties and relaxation towards equilibrium, can accurately be determined 
from the collision integral, its moments and the velocity distribution itself. 
We have reached these conclusions by making a detailed comparison of Boltz- 
mann solutions for a shock wave in a gas of elastic spheres with those for 
Maxwellian molecules (fifth-power law of intermolecular force potential) for 
eight upstream Mach numbers ranging from 1.1 to 10. 

We shall describe briefly the method of incorporating the differential cross- 
section corresponding to the Maxwellian molecules, the accuracy tests and the 
shock solutions obtained, and then present in detail the results of our comparison 
of these shock-wave solutions with those for elastic spheres. 
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2. Shock-wave solutions in a Maxwellian gas 
The numerical solutions of the Boltzmann equations for a shock wave in 

a Maxwellian gas were obtained by embedding Nordsieck’s Monte Carlo method 
of evaluating the collision integral, revised for a Maxwellian gas, in an iterative 
integration scheme. The method is the same as that used to solve the Boltzmann 
equation for the shock wave in a gas of elastic spheres;? therefore, we need 
describe only the method of incorporating the differential collision cross-section 
of a Maxwellian gas in Nordsieck’s method. 

The expression for the collision integral used in Nordsieck’s method is 

We use the notation a - bf for the collision integral to emphasize that the second 
term is proportional to f and the function b is positive. B, P‘, f and f ‘  represent 
the four values of the velocity distribution function corresponding to the four 
velocities V, V‘, v and v‘. The unit vector k is directed along the line of centres of 
the molecules at the time of their closest approach. Integration is over the entire 
4n solid angle in order that the k integration limits may be independent of 
v and v’. The differential cross-section S2 is Ik. (v’ - v)]  for elastic spheres and 
a function of the deflexion angle x for Maxwellian molecules (x = deflexion 
angle of the relative velocity vector v - v’ due to collision).$ 

Since the difference between the expressions for the Boltzmann integral for 
the two collision laws is in the differential cross-section a, the substitution of 
a new collision law involves merely changing this cross-section within the 
computer program. In computing the collision integrals for the Maxwellian 
molecules, we use the Boltzmann computer program for elastic spheres 8 with 
only one change, namely, the replacement of the differential cross-section 

t Cheremisin has also developed a Monte Carlo method of evaluating the Boltzmann 
collision integral for a gas of elastic spheres and used it in an integral iterative scheme to 
solve the shock-wave and heat-transfer problems (Cheremisin 1970a, b) ;  however, only 
a small number of macroscopic properties were published. Since he used the position co- 
ordinate as the independent variable, he did not make all the possible comparisons. 
However, some of his results were found to be in good agreement with ours. Chorin (1972) 
proposed a direct quadrature method and solved the shock-wave problem for elastic spheres 
for Mach numbers less than 2. 

$ The expression first given by Wang-Chang (Wang-Chang & Uhlenbeck 1952) is in 
error by a factor of 2 4 .  This error was corrected in a recent publication (de Boer & Uhlenbeck 
1970, p. 70). 

9 The accuracy of our computation of the Boltzmann collision integrals for a gas of 
elastic spheres using this computer program has been further ascertained by comparing for 
several Mach numbers the calculated Mott-Smith (1951) distribution functions with 
analytical solutions calculated using Narasimha’s (Deshpande & Narasimha 1969) computer 
program which were for the same distribution function and gas. For this comparison, we 
used a large sample size (131000) for our Monte Carlo calculations to minimize the 
statistical error. Narasimha’s computer program was revised to output the analytical 
calculation in the same format. Our results were found to be in good agreement for most 
velocity bins. The results of comparison with analytical and other calculations for elastic 
spheres were presented at  the 7th International Rarefied Gas Dynamics Symposium, Pisa, 
Italy (Hicks & Yen 1973). 

9 P L M  65 
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FIGVRE 1. Comparison of Monte Carlo calculations of two moments of collision integral for 
Mott-Smith distribution function at  2 = 4, [ I M S ( W ~ ) ] ~ = +  and [ I~s(w:)]~=*,  for six Mach 
numbers. [1Ms(#)la=+ = f$[(a - bf)~s],+&dv; = (n - nl)/ (nz - n ~ .  ~ , analytical 
calculations; 0, Monte Carlo. The average probable error of Monte Carlo calculation is 
less than 4 yo. 

Ik. (v’-v)l by a table of values for Maxwellian molecules. For each collision 
selected, the value of the differential cross-section needed is obtained from this 
table through interpolation. 

We use 4/24 as the unit of length. The m e m  free path I ,  upstream for Max- 
wellian molecules is defined as 

where A = 6dO-499A2(5 )  and A2(5)  = 0.436. Equation ( 2 )  is based upon the 
following relation between the viscosity coefficient ,u and the mean free path in 
order to be consistent with the case for elastic spheres: 

,u = 0*499(nml)  (Skt/n-m)*. (3) 

One of the tests of the accuracy the computations was to compare two moments 
of the collision integral for the Mott-Smith distribution function for six Mach 
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numbers in the range 1.5-10. As shown in figure 1, the Monte Carlo results are 
in excellent agreement with the analytical calculations. 

The Boltzmann equation we use is of the following form: 

vx af /ax  = a - bf = I(F.8" -ff') (a) dv'(dk/4n), (4) 

where f = f ( v ,  x )  is the velocity distribution function; x is the distance variable 
in the direction perpendicular to the shock. In (4), the units we use are the 
values, denoted by the subscript 1, of various properties of the upstream gas. 
Thus n, and t, are the units of number density n and temperature t. The unit of 
length 1, = 1 / 2 ~ n , ~ ~  = (mean free path),/2*. The unit of velocity 

c1 = (27rkt1m)* = (mean speed), x $n. 

The unit of time is therefore (mean free time), x (2/n)* and the unit of the velocity 
distribution function is n,/cf. 

Briefly, the iterative scheme to obtain the Boltzmann solution (specifically, 
to find the velocity distribution function a t  the 226 positions in velocity space 
a t  each chosen position in the shock wave) consists of the following steps. 

(a) Assume an initial distribution function fO(n, v) equal to the Mott-Smith 
distribution function. 

(b )  Evaluate the collision integral for this f at each n. 
(c) Integrate the 226 Boltzmann difference equations. 
(d)  Repeat steps (b)  and (c) to perform successive iterations. 
Solutions were obtained for eight Mach numbers in the range Hl = 1-1-10. 

Nine stations dividing the variable n equally and Monte Carlo samples of P3 
collisions were generally used. Four independent runs were made to obtain the 
statistical errors. 

The accuracy of the solutions has been determined further by checking the 
following two relations between two moments of the collision integrals and 
several macroscopic properties : 

1(V2)/13T = 0 1 ,  ( 5 )  

4vxv2)/(  -&q) = 01, (6) 

where I($) = moment of the collision integral = J" $(u - b f )  d v ,  a - bf = collision 
integral, p = pressure, T = stress, q = heat flux and t = temperature. It was 
found that the relations ( 5 )  and (6) hold well for our solutions for the shock wave 
for Maxwellian molecules (Nathenson, Baganoff & Yen 1973). 

We shall discuss in the following sections the characteristics of a shock wave 
in a Maxwellian gas, the comparison with those in a gas of elastic spheres and 
the effect of the collision law on shock pr0perties.t 

3. Density gradient and reciprocal shock thickness 
As indicated in our paper on shock-wave structure in a gas of elastic spheres 

(Hicks et al. 19721, presenting results as density gradient dn/dx vs. reduced 
density ,+? instead of n vus. x has the advantage of showing clearly the asymmetry 

t A small part of the results appear in Yen et al. (1973). 

9-2 
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FIGURE 2. Comparison of density gradients dm/dx for three values of MI. -, Maxwellian 
molecules; -. -. - , elastic spheres. The average probable error is 040931. 

and the relaxation in the wings of the shock wave. Furthermore, the reciprocal 
shock thickness can be determined more accurately from such plots. 

We compute all the gradients of the moments of the velocity distribution 
function and of the macroscopic properties from the related moments of the 
collision integrals since, for one-dimensional flow, 

d[&(#)lldx: = 4 # / u z ) ,  (7) 

where A(#) = moment of distribution function = #jdv, 

I ( $ )  = moment of collision integral = J$(u - bf) dv. 

The moment of the collision integral I( l / uJ  is thus equal to the density gradient 
dn/dx. It can be shown that the temperature and stress gradients are related to 
I (u t / v z )  and the heat-flux gradients to I ( u t / u z )  and I(v:). 

Figure 2 shows the density gradient dn/dx us. the reduced number density 
$2 for HI = 2.5, 4 and 10. The corresponding results for elastic spheres are also 
shown for comparison. We observe clearly the difference in the relaxation rates 
and their changes with respect to R between the two shocks, especially in the 
wings. We shall comment further on the differences in 8 5, where the gradients of 
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FIGURE 3. Variation of reciprocal shock thickness with Mach number M I  for M ,  < 2. -, 
Navier-Stokes; 0, Boltzmann. The probable error for the Boltzmann calculation is less 
than 6 yo. 

properties are discussed in general. The agreement of dn /dx  with the Navier- 
Stokes shock for MI = 1.2 will be discussed in 9 6, in which the characteristics of 
the weak shocks are compared. 

We obtain from these plots of the density gradient the maximum value and 
calculate the reciprocal shock thickness T, according to the expression 

T,.8 = 29(dn/dx)/(n2 - nl). 

The results for the reciprocal shock thickness are shown in figure 3 for weak 
shocks and in figure 4 for strong shocks. Our Boltzmann calculations are seen 
to be slightly lower than the Navier-Stokes values for MI = 1.1, 1.2 and 1.59. 
For strong shocks, the Boltzmann calculations are in agreement with the Mott- 
Smith result for the v , v ~  moment for MI = 2-5, 4 and 10 and are closer to the 
Mott-Smith result for the vi moment for Ml = 6 and 8. Bird’s (1970) result for 
Nl = 8 seems to be in agreement with the Mott-Smith result for the v , v ~  moment. 

The density profiles may be calculated by numerical integration from dG/dx: 

x(r2) = J’” (dx/dG) d2, 
n=lmax 

in which Gmax is the reduced density at which dG/dx is maximum. We made this 
calculation for Nl = 8 in order to make a comparison with Bird’s (1970) results. 



134 S.-M. Yen and W .  Ng 

I I I I I I I 

1 2  3 4 5 6 7 8 9 10 

Mach number, M ,  

FIGURE 4. Comparison of reciprocal shock thickness as a function of M ,  with the Mott-Smith 
results. -, Mott-Smith (w,w:); ---, Mott-Smith(w:); -a-, Mott-Smith (wi); 3, Boltz- 
mann; A ,  Bird. The probable error for the Boltzmann calculation is less than 3.5 yo. 
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FIGURE 5 .  Comparison of density profiles for M ,  = 8. 2 = ( m - - n 1 ) / ( n 2  -n1), 
I, = upstream mean free path. ----, Bird. 

Figure 5 shows the comparison for both elastic spheres and Maxwellian molecules. 
Our results are in agreement with Bird’s calculations for elastic spheres; however, 
for Maxwellian molecules, Bird’s density profile seems to  give a faster relaxation 
rate. Since our method is different from Bird’s technique, it will not be possible 
to assess the relative systematic error in a given shock-wave property for a given 
collision law. (Systematic error exists in all numerical calculations.) Further- 
more, for this particular calculation, our density profiles were evaluated from 
a moment of the collision integral, not from a moment of the distribution 
function, as done by Bird. 

It would be significant to  establish the accuracy of the calculated value of 
a given shock-wave property, such as the density profile, by comparing it with 
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an accurate experiment. A comparison was made of Bird's calculation of the 
density profile for the twelfth-power law for MI = 8 with an experiment for 
argon (Schmidt 1969), and excellent agreement was obtained.? Schmidt felt that 
such agreement confirmed the finding of a heat-transfer experiment that the 
twelfth-power collision law is suitable for argon since, according to his observa- 
tion, the differences in the density profiles for the eleventh- and twelfth-power 
laws are significant. However, Bird (1970) has carefully studied the results and 
seemed to have reservations on this conclusion because of the lack of repro- 
ducibility in the heat-transfer data from which the power of the collision law 
was determined and the lack of discrimination of his calculation of the density 
profile between even the ninth- and twelfth-power laws a t  MI = 8. 

We have also computed the asymmetry ratio Q according to the following 
expression: 1 

We found that this ratio is smaller than one for Mach numbers below about 1.5, 
indicating that the peak of the density profile moves from the cold side to the 
hot side of the shock wave as the Mach number increases. We have observed 
similar characteristics for the weaker shock wave for elastic spheres (Hicks et al. 
1972). 

4. Moments of velocity distribution function and macroscopic properties 
We can calculate all the ordinary macroscopic properties of a non-equilibrium 

gas from six moments of the velocity distribution function f (Hicks et al. 1972). 
The six moments are n = A;, and A',, As, A4, A6 and d9, where 

A,, = J-f Q,dv (10) 

and Ql = 1, 0, = v,, <D3 = v:, Q4 = vxv2, <D6 = v:, Q9 = v l .  

The moments A2, A3 and A4 are the invariants. 

are 
The reduced dimensionless properties derived from some of the six moments 

u = A2/n  (gas velocity), (11) 

t, = 2 4  - u2 + A&] (longitudinal temperature), (12)  

t ,  = nA,& (lateral temperature), (13) 

t = +tz + i t L  (temperature), (14) 

T = $n(t ,  - t,) (stress), (151 

(16) 

(17)  

q = (277A4fA2) - 3t, - 2t,- 2nu2 (total heat flux), 

q, = (27rA6 /A2)  - 3t, - 2 n d  (longitudinal heat flux). 

t Since the difference in the density profile between the gas of elastic spheres and that 
of twelfth-power law was found to be small (Bird 1970), we may expect that our result on 
this property if calculated according to the twelfth-power law would also be in agreement 
with Schmidt's experiment. 
1 First used by Schmidt (1969). 
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FIGURE 6. Variation of moment A ( v t )  = Jv!fdv of distribution function as a function of 
reduced number density = (n-n1)/(~,-n,)  for M ,  = 10. 0, Maxwellian molecules; 0, 
elastic spheres. Maximum probable error is less tha,n 2 yo. 

In  accordance with our definition of units above, the units of the dimensional 
quantities (corresponding to the dimensionless quantities u, t ,  r and q) are, 
respectively, u,, t,, p1 and uf. 

Our calculations show that each of five non-invariant moments off (A%*, d6, 
dg and two other moments) is nearly a linear function of the density n. One of 
these results is shown in figure 6, in which dg is plotted us. 53 for Ml = 10. As 
shown in this figure, the shock wave for the case of elastic spheres also exhibits 
the linearity (Hicks et al. 1972). We thus observe that the moments off that 
determine the ordinary macroscopic properties are strongly coupled and that 
this coupling depends very weakly on the intermolecular collision law. We might, 
therefore, expect that the variation of macroscopic properties with respect to n 
and to each other would be nearly the same for a gas whose intermolecular 
collision law lay between the two extreme cases of elastic spheres and Max- 
wellian molecules. It should be noted that the Mott-Smith shock predicts an 
exactly linear dependence of the moments off on n and, therefore, independence 
of the collision law for the variation of macroscopic properties with respect to n. 

The variation of the heat fluxes and the stress with respect to 53 is shown in 
figure 7 for Ml = 4 for three shocks: the Boltzmann shock in a Maxwellian gas, 
the Boltzmann shock for elastic spheres and the Mott-Smith shock. The overall 
variation of each of the three properties among the three shocks is seen to be 
very close; however, the differences are significant, especially in the upstream 
and the downstream wings. 
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FIGURE 7. Comparison of variation of stress 7/p1, heat flux q and heat flux q, associated 
with longitudinal motion with reduced density 2 for A, = 4. -, Boltzmann-Maxwellin 
molecules; -.-, Boltzmann-elastic spheres; ---, Mott-Smith. Average probable errors 
for the Boltzmann calculations are less than 0.06 for 7/p1 and q, and less than 0.12 for q. 
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FIGURE 8. Variation of heat flux ratio qs/q with local Mach number M for different values 
of MI. - , theory of Baganoff & Nathenson. Boltzmann-Maxwellian molecules: 
V, M ,  = 1.2; 0, M ,  = 2.5; 0, M,  = 4; 0, M ,  = 10. 
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For the shock structure in a gas of elastic spheres, we have discussed other 
moments and properties as functions of density (Hicks et al. 1972). These func- 
tions would also be insensitive to a change in collision law. We show in figure 8 
the ratio qJq as an example. It was found also to correlate well with the local 
Mach number according to a model predicted by Baganoff & Nathenson (1970). 

5. Spatial gradients of shock properties 
In 3 4 we discussed the strong coupling among macroscopic shock properties 

and its relative insensitivity to changes in the intermolecular collision law. We 
shall turn our attention here to the spatial gradient of macroscopic properties, 
which strongly depends on the intermolecular collision law. As indicated in § 3, 
we study such gradients on the basis of our calculations of the moments of the 
collision integral [see equation (7)]. 

We have studied three moments of the collision integral: I(l/wz), I(w:/w,) and 
I(vz).  The density gradient is determined by I( l/wz). The temperature and stress 
gradients are related to I(wt/vz), and the heat flux gradients to I(wT/wT) and I(@. 

The moment I(I/w,) for shocks for both elastic spheres and Maxwellian 
molecdles, plotted for several Mach numbers in figure 3, is discussed in $3 .  
The moments I(wz) and I(v:/vz) for Ml = I0 are shown in figures 9(a) and ( b )  
respectively. The difference in the relaxation rates for these two moments for 
the two shocks is qualitatively similar to that for I (  i/w,). 

In  order to make a quantitative assessment of the differences in the moments 
of the collision integrals and the corresponding gradients in moments o f  the 
distribution function, we show in table 1 the ratio of the three moments [I(4)IMM 
for Maxwellian molecules and [1(4)IES for elastic spheres a t  several positions 
in a shock wave for Ml = 4 and 10. We observe that the ratio is nearly constant in 
the range of k = - $but that it is different in the upstream (6 = 9) or downstream 
(2 = $, f )  wings. It seems, therefore, that there are three distinct regions in which 
the effects of the intermolecular potentials differ. We also see that the variation 
of these ratios with respect to density A for all three moments is nearly the same 
for the two Mach numbers. This also implies that the variation of one property 
with respect to the others is also nearly the same and, thus, its dependency 
on the collision law is slight. (This conclusion is of course consistent with the 
same finding based on the fact that several moments of the distribution function 
in a shock wave are almost linear functions of the density for both gases.) 

We thus see that the principal effect of the intermolecular collision law for 
soft molecules on macroscopic properties is in the magnitude of their relaxation 
rates and, in addition, the nature of the relaxation in the upstream and down- 
stream wings. Since the nature of the relaxation in the interior of the shock is 
similar for three moments of physical interest, we are able to justify those 
theoretical and experimental studies of the effect of intermolecular collisions 
which look a t  only the density gradients by the following statement. Except in 
the upstream and downstream wings, the spatial variation of shock properties 
can be determined €airly well from that of any property, e.g. n(x),  which can be 
obtained more easily in most experimental and theoretical studies. 
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Reduced number density, 2 
FIGURE 9. Comparison of variation of moments of (a)  I($ and ( b )  I(w2,/vz) of collision integral 
with 6 for M I  = 10. -, Maxwellianmolecules; ---, elastic spheres. Average probable 
error is less than 6 yo. 

6. Comparison with Navier-Stokes shock at a low Mach number 
(XI = 1.2) 

In the comparison with the Navier-Stokes shock in a gas of elastic spheres 
(Hicks et at. 1972), we have found that (i) the Boltzmann density gradient is 
lower than the corresponding Navier-Stokes value for 2 > 0.2, (ii) the dt/dn vs. 6 
profiles are in agreement, (iii) the value of the Prandtl number Pr is nearly 
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M , = 4  

Q 0-52 0.53 
0.55 0.54 

0.53 0.55 
0.57 0.55 
0.58 0.55 
0.63 0-62 

3 0.75 0.71 

a 
8 + * 
2 

7 7 

4 W Z  

0.61 0.15 
0.56 0.19 
0.55 0.20 
0.54 0.2 1 
0.55 0.20 
0.58 0.19 
0-69 0.18 

MI = 10 
----h_-_7 

0.16 0.19 
0.20 0.19 
0.20 0.20 
0.20 0.20 
0.19 0.19 
0.19 0.17 
0.15 0.14 

va,lvx 4 

TABLE 1. Ratio [ I ( $ ) ] M M / [ . ~ (  $ ) ] B s  of collision integrals. (Average probable 
errors for I($) less than 6 yo.) 

0 
Reduced number density, h 

FIGURE 10. Comparison of density gradient dnldx for Boltzmann-Maxwellian molecules 
with Navier-Stokes results for M ,  = 1.2. -, Navier-Stokes; $ , Boltzmann-Maxwellian 
molecules, indicating probable error. 

constant in the interior of the Boltzmann shock and (iv) the viscosity-temperature 
relation in the Boltzmann shock departs considerably from that of the linearized 
theory especially in the downstream half of the shock. We have made the same 
comparative study and shall discuss the results here 

As shown in figure 10, the Boltzmann density gradient for Maxwellian 
molecules is in good agreement with the Navier-Stokes shock corresponding to 
the viscosity-temperature relation p/pl = t/t,. As indicated above, the density 
gradient, except in the upstream wing, is lower than the Navier-Stokes results 
for the case of elastic spheres. 

Our findings on the variation of dtjdn, Pr and the viscosity-temperature 
relation with respect to reduced density 6 are essentially the same as those for 
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FIGURE 11, Comparison of Boltzmann gradient d;/& of reduced temperature with the 
Navier-Stokes values for M ,  = 1.2. - , Navier-Stokes; 0, Boltzmann-Maxwellian 
molecules; , Boltzmann-elaatic spheres. Average probable error for the Boltzmann 
calculations is less than 0-0065. 

the elastic spheres. We compare these results in figures 11, 12 and 13. It should 
be pointed out that we use 

(,u/pl)/(t/tl)* for elastic spheres, I (,u/,ul)/(t/tl) for Maxwellian molecules. 
,&el = 

For a Chapman-Enskog gas (i.e. for small values of N1 - l), lure1 should be equal 
to one. 

7. Velocity distribution function 
We have monitored the difference between the velocity distribution functions 

of the two Boltzmann shocks for Nl = 4 through our computer graphical display 
system. (The layout of the velocity space for the direct display of the velocity- 
dependent functions is shown in figure 14.) We shall discuss the qualitative 
features of the difference in the distribution functions for the two shocks for this 
Mach number, as exhibited by the graphical display. 

Representative distribution functions f a t  five positions 
A 

(n  = (n - nl)/(nz - 12,) = +, a, 4,2 and Q) 
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FIGURE 12. Variation of Prandtl number Pr with reduced density & for Ml = 1-2. 
0, Boltzmann-Maxwellian molecules; 0, Boltzmann-elastic spheres. Average probable 
error < 0.03. 

FIGURE 13, Variation of the viscosity-temperature ratio prey pre, = ( ,u/pl)/( t / t1) for Max- 
wellian molecules. pre, = (,u/pl)/(t/tl)h for elastic spheres. $ , Boltzmanii-Maxwellian 
molecules, showing probable error; $, Boltzmam-elastic spheres, showing probable error. 

are shown in figures 15 (a) and ( b )  (plates 1 and 2) for both Maxwellian molecules 
and elastic spheres. (The scale for each display is different and is adjusted to 
have the same maximum height for each figure to show the detailed feature.) 
These pictures show clearly the following three differences: (i) the deep penetra- 
tion of high speed molecules from the cold side towards the hot side in the case 
of elastic spheres (indicated by the sharp peaks on the positive-v, side throughout 
the shock) and the lack of it for the Maxwellian molecules, (ii) that the bimodal 
characteristics of the distribution functions are less pronounced in the case of 
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Function displayed + 

FIGURE 14. Computer graphical display. 

FIGURE 16. Comparison with an experiment of the Boltzmann results for the half-width 
= ( W -  W1)/(W2-- W,) of the distribution function f(v,) = sfdvgdvs in a shock wave 

at M ,  = 1.59. - , Chapman-Enskog; 5 ,  experiment (helium), Muntz & Harnett; 
0, Boltzmann-Maxwellian molecules; , Boltzmann-elastic spheres. Maximum probable 
error for the Boltzmann calculations is less than 1 yo. 

Maxwellian molecules, and (iii) that the relaxation towards equilibrium in the 
downstream wing is completed earlier for Maxwellian molecules (indicated by 
the observation that, for Maxwellian molecules, the distribution functions a t  
r2 = 9 and 8 are much closer to the equilibrium values than the corresponding 
distribution functions for elastic spheres). 

Muntz & Harnett (1969) have made two experimental measurements of 
certain distribution functions for MI = 1-59: 

F(v,) = 1 f dvydvZ, F(v,) = s f dv,dv,. 

They found significant deviations of F(v,) from that of the corresponding 
Chapman-Enskog first iterate. The results for the half-width of F(v,) are in 
good agreement with our Boltzmann calculations for elastic spheres for this 
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Mach number (Holtz, Muntz & Yen 1971). We have made this calculation also 
for Maxwellian molecules and, as shown in figure 16, have found the same de- 
parture from the Chapman-Enskog result. The values of the half-width for 
Maxwellian molecules are slightly higher than the corresponding results for 
elastic spheres for r2 = 0-2 and slightly lower in the remaining range; however, 
the maximum difference between the two cases is less than 7 yo. It seems, there- 
fore, that this property of the distribution function is also insensitive to the 
change in intermolecular collision law. This insensitivity adds significance not 
only to the comparative study (Holtz et al. 1971) but also to the experimental 
results of Muntz & Harnett (1969). 
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FIGURE 15(a). For legend see plate 2 .  

(Facing p .  144) 
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FIMJHE 15. Display of distribution fiinctioii j for M, = 4 at various positions. ((I) & = 4. $ 
and 4. ( h ) ;  = $ and 3. Tho distributioii filmtian in arbitrary units = verticctl height in 
figiiri~;swIe factor. 


